THE JOURNAL OF ANTIBIOTICS

MIKLOS BODANSZKY*, JILL B. HENES, SESHA NATARAJAN and GLENN L. STAHL Department of Chemistry, Case Western Reserve University Cleveland, Ohio 44106, U.S.A.

RODGER L. FOLTZ

Battelle, Columbus Laboratories, Columbus, Ohio 43201, U.S.A.

(Received for publication February 12, 1976)

A comparison of the high resolution mass spectra of synthetic and natural preparations of malformin provided new evidence for the revised structure:

|→D-Cys-D-Cys-Val-D-Leu-Ile-

The interpretation of the mass spectra was aided by the examination of the spectra of the synthetic peptides, desthiomalformin and enantio-5-valine malformin.

Malformin, a metabolic product of several fungi, can cause severe curvatures on plants¹⁾ and has antibacterial²⁾ and cytotoxic⁸⁾ properties as well. It was discovered by CURTIS¹⁾, who, with his associates, isolated the active material in pure form⁴⁾ and determined its structure⁵⁾. Mass spectra of members of the malformin family⁶⁾ were also reported⁷⁾. These spectra were in general agreement with the proposed⁵⁾ structure of a cyclic pentapeptide disulfide (I, Fig. 1),

Fig. 1. I—The sequence originally proposed⁵⁾ for malformin;
III—The revised^{8,9)} sequence of malformin;
III—Desthiomalformin¹²⁾;
IV—Enantio-5-valine malformin¹³⁾
$$\rightarrow D-Cys-Val-D-Cys-D-Leu-Ile—$$
 $\rightarrow D-Cys-D-Cys-Val-D-Leu-Ile—$ IIIIIIIIIIIV

although there were some unidentified ions that were considered to arise through rearrangements under the conditions of mass spectrometry. More recently, a revision of the structure of malformin became necessary. The revised structure (II, Fig. 1) was confirmed by synthesis^{\$, 9}). The properties of the synthetic compound, including its biological activities, were indistinguishable from those of the natural product. Nevertheless, additional independent evidence for the correctness of the revised structure (II) seemed to be desirable.

It was not *a priori* obvious that mass spectra can provide the evidence sought. Homodetic¹⁰ cyclic peptides do not follow the fairly simple fragmentation pattern of linear acylpeptide esters, or peptide lactones. In a ring formed only by peptide bonds, no distinct starting point of fragmentation is present and, therefore, instead of one series of sequence ions, several sets of fragments are generated. Furthermore, in addition to the bonds most frequently ruptured in

^{*} To whom correspondence should be addressed.

THE JOURNAL OF ANTIBIOTICS

linear peptides, namely the bonds between amino acid residues and the bonds connecting the carbonyl carbon and α -carbon in these residues, in homodetic cyclic peptides, fragmentation occurs also between α -carbons and the nitrogen atoms¹¹⁾. Because of these complications, we felt that a mere comparison of the high resolution mass spectra of natural and synthetic malformin preparations might not yield convincing evidence that could corroborate our revision of the structure. We expected, however, that an extension of the study to synthetic desthiomalformin¹²⁾ (III, Fig. 1) and to the synthetic, biologically active analog of malformin, enantio-5-valine malformin¹⁵⁾ (IV, Fig. 1) would enhance the probability of satisfactory interpretations.

The high resolution spectrum of the synthetic *cyclo*-pentapeptide desthiomalformin (III) revealed the molecular ion peak at m/e 467 (Table 1). Ions resulting from fragmentation of amino acid side chains were of minor importance and, for the sake of simplicity, these are not included in Table 1. The elimination of single amino acid residues led to moderately intense signals for ions of the (M-NH·CHR·CO)⁺ type, while the loss of fragments with the general formula NH·CHR, described by MILLARD¹¹), was somewhat more pronounced. This was not limited to the residues with bulky side chains, as found by this author in a different cyclopeptide, although the NH·CHR fragments from value, leucine and isoleucine were indeed the most abundant ones. The combination of elimination of NH·CHR and CO=NH led to fairly

Table 1. Desthiomalformin $(C_{23}H_{41}N_5O_5)$

Mass found	Rel. int. ^b (%)	Interpretation ^a (ions)
468.3196	27.74	MH and ¹³ C isotope of M
467.3095	22.75	M
466.3017	2.74	M-H
451.3117	2.17	MH-OH
450.3066	7.25	M-OH
424.3063	0.83	M-HNCO
424.2759	1.48	M-NHCHR (Ala)
397.2507	3.38	MH-NHCHR (Val)
396.2366	0.71	M-NHCHR (Val)
383.2315	3.12	MH-NHCHR (Leu)
382.2228	5.55	M-NHCHR (Leu)
396.2755 369.2504 368.2381 367.2369 354.2297	$ \begin{array}{r} 1.09 \\ 0.58 \\ 1.90 \\ 1.05 \\ 4.66 \end{array} $	$\begin{array}{c} M-Ala\\ MH-Val\\ M-Val\\ M-(Val+H)\\ M-Leu \end{array}$
381.2584	12.76	$M-(Ala \cdot NH)$
353.2311	14.57	$M-(Val \cdot NH)$
339.2125	37.04	$M-(Leu \cdot NH)$
310.2257 282.1945 268.1799 240.1451 239.1371 226.1299	$\begin{array}{r} 4.81 \\ 12.06 \\ 6.94 \\ 17.88 \\ 16.42 \\ 10.96 \end{array}$	(Val, Leu ₂)-NH (Ala, Leu ₂)-NH (Ala, Val, Leu)-NH (Ala ₂ , Leu)-NH (Ala ₂ , Leu)-NH ₂ (Ala ₂ , Val)-NH

^a Leu stands for both Leu and Ile.

^b The most abundant ion (100%) with m/e86.0963 corresponds to Leu-CO+H; the next most intense peak (69.73%) with m/e 72.0813 was interpreted as H₂N-⁺CH-CH(CH₃)₂ from value. intense peaks corresponding to ions with the $(M - NH \cdot CHR \cdot CONH)^+$. general formula More importantly, intense signals were found for ions in which the mass of the molecular ion was diminished by NH·CHR·CO·NH· CHR'.CONH. These ions provided the desired information about the amino acid composition of the five possible tripeptide sequences. The tripeptides (Val, Leu₂), (Ala, Leu₂), (Ala, Val, Leu), (Ala₂, Leu) and (Ala₂, Val) allow only the sequence cyclo-Ala-Ala-Val-Leu-Leu, but do not permit a differentiation between leucine and isoleucine. Therefore, while only "leucine" was written, it has to be kept in mind that both peptides II and III contain one residue each of leucine and isoleucine. Furthermore, the data of the high resolution mass spectra gave no clue for the direction of the peptide chain.

As anticipated, the spectrum of the synthetic pentapeptide disulfide IV was more complex (Table 2). A general tendency for the loss of S, SH, H_2S , and particularly of H_2S_2 could by clearly discerned. The fragmentation along the peptide backbone was superimposed on the elimination of the disulfide

Mass found	Rel. Int. (%)	Interpretation ^a (ions)
$\begin{array}{c} 547.1921\\ 516.2278\\ 515.2240\\ 498.2144\\ 484.2556\\ 483.2509\\ 482.2438\\ 481.2348\\ 452.2861\\ 451.2793\\ 450.2726\\ 449.2662 \end{array}$	$\begin{array}{c} 0.68\\ 2.34\\ 6.54\\ 0.40\\ 0.67\\ 0.94\\ 0.85\\ 0.65\\ 0.18\\ 0.35\\ 1.23\\ 1.42 \end{array}$	$ \begin{array}{c} M+S \\ M+H \\ M \\ M-OH \\ M+H-S \\ M-S \\ M-HS \\ M-H2 \\ M-H2 \\ M-S_2 \\ M-S_2 \\ M-HS_2 \\ M-HS_2 \\ M-H_2 \\ S_2 \end{array} $
$\begin{array}{c} 384.1788\\ 350.1936\\ 337.1924\\ 336.1838\\ 310.2160\\ 238.1110\\ 237.1050\\ 213.1602\\ 212.1563\\ 211.1438\\ 169.0978\\ 167.0808\\ 138.0405 \end{array}$	$\begin{array}{c} 0.20\\ 0.54\\ 0.40\\ 0.42\\ 1.30\\ 0.56\\ 1.32\\ 1.36\\ 1.65\\ 9.01\\ 1.85\\ 1.17\\ 0.75\end{array}$	(Cys-H, Val, Leu, Dha+H) (Dha, Dha, Leu, Val) (Dha, Dha, Val, Val)+H (Dha, Dha, Val, Val) (Val, Val, Leu)-H (Dha, Dha, Val)+H (Dha, Dha, Val)+H (Dha, Dha, Val) (Leu, Val)+H (Leu, Val) (Leu, Val)-H (Dha, Dha)
444.1532 378.1849	0.32 0.14	$\begin{array}{c} M-NH\cdot CH\cdot R \ (Val) \\ M-H_2S_2-NH\cdot CH\cdot R \ (Val) \end{array}$
397.1980	0.16	(Cys, Val, Val, Leu)
387.1240 366.2361	0.13 0.39	(Cys, Cys, Val, Val)–NH (Dha, Leu, Val, Val) –NH+H
321.1660 296.2104 267.1683 223.1043 197.1420 154.0831	$\begin{array}{c} 0.47 \\ 0.24 \\ 1.02 \\ 1.22 \\ 1.44 \\ 3.87 \end{array}$	(Dha, Dha, Val, Val)-NH (Val, Val, Leu)-NH (Val, Dha, Leu)-NH+H (Dha, Dha, Val)-NH+H (Val, Leu)-NH (Dha, Val)-NH+H
378.1849 338.2031 308.1654 265.1080 239.1324	0.18 1.71 0.70 0.27 2.15	CO·(Dha, Dha, Val, Leu) CO·(Val, Val, Leu)-H CO·(Dha, Val, Leu)+H CO·(Dha, Dha, Val) CO·(Val, Leu)-H
276.0866 185.1648 112.0661 111.0562 110.0521	0.24 1.32 4.73 5.33 1.60	(Cys, Cys, Val)-CO+H (Leu, Val)-CO+H (Dha, Dha)-CO+2H (Dha, Dha)-CO+H (Dha, Dha)-CO
169.1441 143.0788 126.0906	1.19 2.99 6.06	(Leu, Val)-CO-NH (Cys, Val)-CO-NH+H (Dha, Val)-CO-NH+H

Table 2. Enantio-5-valine malformin $(C_{22}H_{37}N_5O_5S_2)$

^a The base peak (100 %) is a fragment with m/e 72.0824 (C₄H₁₀N, Val-CO+H).

bridge and the concomitant formation of $$\rm CH_{2}$$

dehydroalanine (Dha, -NH-C-CO-) residues. These residues were recognized as constituents of several fragment ions. The mass 547 (515+ 32) probably corresponds to a trisulfide which might have originated from collisions between H_2S_2 with still intact molecules of **IV**, or from a small amount of trisulfide in the synthetic product. The characteristic appearance of the ions corresponding to dehydroalanyl-dehydroalanyl and of (Val₂, Leu), together with the absence of fragments corresponding to (Dha, Leu), (Val, Val) and to (Dha₂, Leu), would have allowed an unequivocal sequence assignment, if the sequence would not have been known before.

The experience gained through the examination of the spectrum of IV was helpful in the interpretation of the spectra of synthetic and natural malformin (Table 3) since, apart from the configuration of individual residues, malformin is the next higher homolog of compound IV. Because of the presence of both leucine and isoleucine in malformin, the mass spectra in themselves were not sufficient for the determination of the structure. Yet, the spectra, and particularly the presence of a fragment corresponding to Dha-Dha, prove the crucial point of the structure revision^{8,9}: that the two half cystine residues are next to each other in the sequence. Also, the presence of fragment ions corresponding to (Val, Leu) or (Val, Ile), (Dha, Val), (Leu, Ile), (Val, Leu, Ile) and to (Dha₂, Val), and particularly the excellent agreement between the spectra of the natural and synthetic products are all in harmony with the revised structure (II) of malformin.*

^{*} For a preliminary account of this study cf. BODANSZKY, M.; J. HENES, S. NATARAJAN, G.L. STAHL & R.L. FOLTZ: Cyclic pentapeptides related to malformin. Polymer Preprints 16-2: p. 133, 1975.

THE JOURNAL OF ANTIBIOTICS

Mass found	Rel. int. (%)	Interpretation ^a (ions)	Mass found	Rel. int. (%)	Interpretation ^a (ions)
561.2090 530.2473 529.2432 512.2279 498.2679	$\begin{array}{r} 0.12 \\ 2.68 \\ 6.24 \\ 0.46 \\ 0.47 \end{array}$	$M+S^*$ M+H $M-OH^*$ M+H-S	353.2297 352.2232 253.1528 239.1403	$\begin{array}{c} 0.27 \\ 1.71 \\ 0.27 \\ 2.31 \end{array}$	CO·(Val, Leu, Leu) CO·(Val, Leu, Leu)-H CO·(Leu, Leu)-H* CO·(Val, Leu)-H
497.2610 496.2552 495.2500	0.54	M-S M-HS M-HS	310.2156	0.46	(Dha+H, Dha+H, Leu, Val) -CO-NH+H (Dha Dha Val)
465.2909 464.2893 463.2795	$0.14 \\ 0.17 \\ 0.97 \\ 0.67$	$M - H_2 S$ $M - S_2$ $M - HS_2$ $M - H_2 S_2$	193.0954	0.43	(Dha, Dha, Val) -CO-NH+H (Dha, Dha, Val) -CO-NH-H
350.1983 324.2250 282.1874	0.26 2.90	(Dha, Dha, Leu, Val) $(Val, Leu, Leu)-H$ $(Dha, Val, Leu)+H$ $(Dha, Val, Leu)-H$ $(Dha, Dha, Val)+H$ (Dha, Dha, Val) $(Leu, Leu)-H$ $(Leu, Val)+H$ $(Leu, Val)-H$ $(Leu, Dha)-H$ $(Dha, Val)+H$ $(Dha, Val)+H$ $(Dha, Val)+H$ $(Dha, Val)+H$ $(Dha, Val)-H$ $(Dha, Dha)+H$	$169.1433 \\ 149.0227 \\ 140.1054$	0.14 2.69 2.37	(Leu, Val)-CO-NH (Cys·Cys)-CO-NH (Dha, Leu)-CO-NH
281.1785 280.1715 238.1221	0.15 0.28 0.13		199.1797 141.1024	0.24 2.58	$\begin{array}{l} M-(Cys\cdot Cys, \ Val, \ CO)+H\\ M-(H_2S_2)-(Dha, \ Leu, \ Leu, \ CO)+H\\ CO)+H \end{array}$
225.1189 225.1543 213.1562 212.1476 211.1431	1.01 1.27 0.43 1.85 11.06		157.0960 155.0806 143.0810	0.31 0.60 5.74	CO·Leu·NH+H CO·Leu·NH-H CO·Val·NH+H
181.0971 169.0980	0.11 2.17		152.0690	0.21	(Dha, Val)-NH-H
167.0822 139.0507	0.81 0.43		112.0614 111.0523 110.0461	2.81 3.52	(Dha, Dha)-CO+2H (Dha, Dha)-CO+H (Dha, Dha)-CO+H
444.1428	0.50	M-NH·CH·R (Leu)*	109.0389	0.14	(Dha, Dha) - CO - H
401.1460 338.2094	0.11 0.28	(Cys, Cys, Val, Leu)-NH* (Dha, Dha, Val, Leu)	127.0878	0.90	Leu·NH-H
336.1887	0.14	(Dha, Dha, Val, Leu) -NH+H	112.0759 114.0941	0.53 0.20	Leu-H Leu+H Vol H
267.1710 223.1049	0.73 0.25	(Dha, Val, Leu)-NH-2H* (Dha, Dha, Leu)-NH+H	70.0301	1.92	Dha+H

Table 3. Malformin (natural) $(C_{23}H_{39}N_5O_5S_2)$

^a The base peak (100 %) was observed at m/e 86.0999. This corresponds to $C_5H_{12}N$, Leu-CO+H. * In the spectrum of the synthetic sample of malformin, all the fragments in Table 3 were observed, with the exception of a few which are indicated with asterisks.

Experimental Part

<u>Natural malformin</u> was prepared by the purification of a crude product (received from Professor Roy W. CURTIS) by chromatography on a silica gel column with water-saturated ethyl acetate as eluent⁷. Thin-layer plates of silica gel (with the same solvent) were used for the detection of malformin in the eluates. Fractions, in which only the higher molecular weight material was present, were pooled, the solvent removed *in vacuo* and the residue dried at 80°C and about 0.1 mm for 2 hours.

Synthetic malformin was prepared as described in refs. 8 and 9, and was purified by the method used for natural malformin (cf. above).

Desthiomalformin (IV) was a synthetic material¹²⁾; it was purified by sublimation *in vacuo* at $270 \sim 280$ °C and 0.05 mm.

Spectra. The high resolution electron impact mass spectra were obtained using an A.E.I. MS-9 double-focusing mass spectrometer at an effective resolving power ($M/\Delta M$) of approximately 15,000. The mass spectrometer was equipped with an SRIC CIS-2 ion source which can be used for either electron impact (EI) or chemical ionization (CI). For EI operation, no reagent gas is introduced into the ion source. However, the relatively closed construction of

VOL. XXIX NO. 5 THE JOURNAL OF ANTIBIOTICS

the ionization chamber can result in high sample vapor pressures and therefore in some selfprotonation which gives enhanced MH⁺ ion abundances. The samples were introduced by means of a heated direct-insertion probe and heated until sample ions were observed (approximately 250°C). Perfluorotributylamine was used to provide reference ions. The spectra were recorded at a scan speed of 40 seconds per mass decade on digital magnetic tape with off-line computer processing of the high resolution data. Other significant operating parameters were: accelerating voltage, 8 KV; ionizing energy, 70 eV; ion repeller voltage, 24 V; and source temperature, 200°C.

Acknowledgments

This study was supported by grants from the U.S. Public Health Service (NIH AI-07515 and RR-00665).

References

- CURTIS, R.W.: Curvatures and malformations in bean plants caused by culture filtrate of Aspergillus niger. Plant Physiol. 33: 17~22, 1958
- SUDA, S. & R.W. CURTIS: Antibiotic properties of malformin. Appl. Microbiol. 14: 475~476, 1966
- CURTIS, R.W.: Effect of malformin on the major constituents of *Phaseolus vulgaris*. Plant & Cell Physiol. 10: 203~211, 1969
- TAKAHASHI, N. & R.W. CURTIS: Isolation and characterization of malformin. Plant Physiol. 36: 30~36, 1961
- MARUMO, S. & R. W. CURTIS: Chemical studies on malformin. I. Malformin A. Phytochemistry 1: 245~257, 1961
- 6) IRIUCHIJIMA, S. & R.W. CURTIS: Malformins from Aspergillus ficuum, A. awamor and A. phoenicis. Phytochemistry 8: 1397~1399, 1969
- 7) TAKEUCHI, S.; M. SENN, R. W. CURTIS & F. W. MCLAFFERTY: Chemical studies on malformin.
 V. Malformin B₁ and B₂. Phytochemistry 6: 287~292, 1967
- BODANSZKY, M. & G.L. STAHL: The structure and synthesis of malformin A. Proc. Nat. Acad. Sci. U.S. A. 71: 2791~2794, 1974
- BODANSZKY, M. & G.L. STAHL: Structure and synthesis of malformin A. Bioorg. Chem. 4: 93~ 105, 1975
- SCHWYZER, R.; B. ISELIN, W. RITTEL & P. SIEBER: Synthesen zyklischer Polypeptide. c-Tetraglycyl und c-Hexaglycyl. Über aktivierte Ester. VII. Helv. Chim. Acta 39: 872~883, 1956
- MILLARD, B. J.: Peptides. XX. High resolution mass spectrometry of cyclic peptides. Tetrahedron Letters 1965-34: 3041~3048, 1965
 cf. also Svec, H. J. & G. A. JUNK: The mass spectra of dipeptides. J. Amer. Chem. Soc. 86: 2278~2282, 1964
- BODANSZKY, M. & J.B. HENES: Synthesis and properties of the cyclopentapeptide desthiomalformin. Bioorg. Chem. 4: 212~218, 1975
- BODANSZKY, M.; G.L. STAHL & R.W. CURTIS: Synthesis and biological activity of enantio-[5valine] malformin, a palindrome peptide. J. Amer. Chem. Soc. 97: 2857~2859, 1975